Fluctuation effects in steric reaction-diffusion systems
نویسندگان
چکیده
We propose a simple model for reaction-diffusion systems with orientational constraints on the reactivity of particles, and map it onto a field theory with upper critical dimension dc52. To the two-loop level, long-time particle density N(t) is given by the same universal expression as for a nonsteric system, with N(t);t for d<2. For slow rotations of the particles we find an intermediate regime where N(t);t, with the crossover to the nonsteric asymptotics determined by the rates of rotations and reactions. Consequences for experiments are discussed. @S1063-651X~99!50104-9#
منابع مشابه
Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملFluctuation Kinetics in a Multispecies Reaction-Diffusion System
We study fluctuation effects in a two species reaction-diffusion system, with three competing reactions A + A → ∅, B + B → ∅, and A + B → ∅. Asymptotic density decay rates are calculated for d ≤ 2 using two separate methods the Smoluchowski approximation, and also field theoretic/renormalisation group (RG) techniques. Both approaches predict power law decays, with exponents which asymptotically...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملPattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...
متن کامل